Sophorae japonica L. Flower Extract (95% rutin)

Top Benefits of Rutin

Supports mitochondrial function*

Supports healthy metabolic function *

Supports cellular responses and antioxidant defenses *

Supports healthy aging *


What is Rutin?

Rutin is a flavonoid glycoside composed of quercetin and the disaccharide rutinose. It’s also called rutoside, quercetin-3-O-rutinoside and sophorin. The name rutin derives from the plant Ruta graveolens (Rue). Historically, rutin has been considered to be part of what was once called vitamin P, but what we now think of as citrus bioflavonoids. While it’s found in a wide variety of plants, including citrus, foods with the highest concentrations of rutin include capers, black olives, buckwheat, and asparagus. The most common use of rutin has been for supporting healthy veins.*


Neurohacker’s Rutin Sourcing

Sophorae japonica L. (i.e., Japanese Pagoda Tree) flower extract was selected as an ingredient to provide a standardized amount of rutin. Dried flower buds are used as a starting material to extract rutin, because they can contain as much as 20% rutin.


Rutin Formulating Principles and Rationale

Many flavonoid molecules are part of plants’ protective responses to mild environmental stress. Consuming them tends to produce adaptive functional responses, upregulating pathways that provide stress resistance. Because of this, we don’t think of flavonols like rutin as being “more is better” ingredients. Instead, we think it’s better to use them following hormetic dosing principles (see Neurohacker Dosing Principles). Flavonoids are additive, and often complementary with other polyphenol compounds, so the combination of all polyphenols in a formulation should be considered when determining serving (not the amount of a single polyphenol molecule in isolation). For these reasons, we use a moderate serving of rutin.*


Rutin Key Mechanisms 

Supports mitochondrial structure and function*

Supports transcription factors of mitochondrial biogenesis (PGC-1α, PGC-1β, NRF-1, NRF-2, TFAM)* [1–5]

Supports mitochondrial DNA (mtDNA)* [1,2]

Supports mitochondrial size/number* [1,2]

Supports mitochondrial oxidative phosphorylation proteins* [2]

Supports healthy mitochondrial function* [6,7]


Supports healthy metabolic function*

Supports healthy blood glucose levels* [8–14]

Supports a healthy blood lipid profile* [1,11,12,15]

Supports healthy fat accumulation and liver lipid levels* [1,7]

Supports healthy lipogenesis — influences PPARγ* [1,4]

Supports uncoupling protein 1 (UCP1) and the differentiation of brown adipose tissue* [2]


Supports antioxidant defenses*

Supports antioxidant enzymes* [4–6,9,16–21] 

Counters oxidative stress* [5–7,9,15,16,18–22]

Replenishes glutathione (GSH) levels* [6,9,15,16,18–23]


Supports brain function*

Supports neuroprotective functions [6,18,24–26]

Supports healthy neural immune signaling [6,16]

Supports spatial learning and memory (in animals) [16,24,25]


Supports general health and well-being*

Supports healthy cardiovascular structure and function* [1,11,12,27–30]

Supports a healthy gut microbiota composition and metabolism* [31,32]

Promotes thyroid iodide uptake [33,34]

Supports muscle endurance [5,35]

Supports healthy liver function [7,11,15,19]

Supports healthy kidney structure and function [13,20,21,36,37]

Supports healthy gastrointestinal structure and function [23,38]

Supports healthy immune signaling [2,6,16,22]


Promotes healthy aging and longevity*

Supports AMPK signaling [1,3,4,39]

Supports SIRT-1 signaling [1,2,5,17,22]

Supports PPARα signaling [2]

Influences PARP-1 signaling [16]

Supports forkhead box (FoxO) transcription factor [17]

 

*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.


REFERENCES 

[1]S. Seo, M.-S. Lee, E. Chang, Y. Shin, S. Oh, I.-H. Kim, Y. Kim, Nutrients 7 (2015) 8152–8169.

[2]X. Yuan, G. Wei, Y. You, Y. Huang, H.J. Lee, M. Dong, J. Lin, T. Hu, H. Zhang, C. Zhang, H. Zhou, R. Ye, X. Qi, B. Zhai, W. Huang, S. Liu, W. Xie, Q. Liu, X. Liu, C. Cui, D. Li, J. Zhan, J. Cheng, Z. Yuan, W. Jin, FASEB J. 31 (2017) 333–345.

[3]N. Chen, J. Cheng, L. Zhou, T. Lei, L. Chen, Q. Shen, L. Qin, Z. Wan, J. Physiol. Biochem. 71 (2015) 733–742.

[4]C.-H. Wu, M.-C. Lin, H.-C. Wang, M.-Y. Yang, M.-J. Jou, C.-J. Wang, J. Food Sci. 76 (2011) T65–72.

[5]K.-Y. Su, C.Y. Yu, Y.-W. Chen, Y.-T. Huang, C.-T. Chen, H.-F. Wu, Y.-L.S. Chen, Int. J. Med. Sci. 11 (2014) 528–537.

[6]S.-W. Wang, Y.-J. Wang, Y.-J. Su, W.-W. Zhou, S.-G. Yang, R. Zhang, M. Zhao, Y.-N. Li, Z.-P. Zhang, D.-W. Zhan, R.-T. Liu, Neurotoxicology 33 (2012) 482–490.

[7]T. Li, S. Chen, T. Feng, J. Dong, Y. Li, H. Li, Food Funct. 7 (2016) 1147–1154.

[8]C.-Y. Hsu, H.-Y. Shih, Y.-C. Chia, C.-H. Lee, H. Ashida, Y.-K. Lai, C.-F. Weng, Mol. Nutr. Food Res. 58 (2014) 1168–1176.

[9]P. Stanley Mainzen Prince, N. Kamalakkannan, J. Biochem. Mol. Toxicol. 20 (2006) 96–102.

[10]N. Kamalakkannan, P.S.M. Prince, Basic Clin. Pharmacol. Toxicol. 98 (2006) 97–103.

[11]A.A.H. Fernandes, E.L.B. Novelli, K. Okoshi, M.P. Okoshi, B.P. Di Muzio, J.F.C. Guimarães, A. Fernandes Junior, Biomed. Pharmacother. 64 (2010) 214–219.

[12]K.M. Krishna, A. Annapurna, G.S. Gopal, C.R.V. Chalam, K. Madan, V.K. Kumar, G.J. Prakash, Can. J. Physiol. Pharmacol. 83 (2005) 343–355.

[13]N. Kamalakkannan, P. Stanely Mainzen Prince, J. Pharm. Pharmacol. 58 (2006) 1091–1098.

[14]J.F. Aitken, K.M. Loomes, I. Riba-Garcia, R.D. Unwin, G. Prijic, A.S. Phillips, A.R.J. Phillips, D. Wu, S.D. Poppitt, K. Ding, P.E. Barran, A.W. Dowsey, G.J.S. Cooper, Biochem. Biophys. Res. Commun. 482 (2017) 625–631.

[15]S.S. Al-Rejaie, A.M. Aleisa, M.M. Sayed-Ahmed, O.A. Al-Shabanah, H.M. Abuohashish, M.M. Ahmed, K.A. Al-Hosaini, M.M. Hafez, BMC Complement. Altern. Med. 13 (2013) 136.

[16]H. Javed, M.M. Khan, A. Ahmad, K. Vaibhav, M.E. Ahmad, A. Khan, M. Ashafaq, F. Islam, M.S. Siddiqui, M.M. Safhi, F. Islam, Neuroscience 210 (2012) 340–352.

[17]D. Chattopadhyay, A. Chitnis, A. Talekar, P. Mulay, M. Makkar, J. James, K. Thirumurugan, Biogerontology 18 (2017) 397–411.

[18]M.M. Khan, A. Ahmad, T. Ishrat, G. Khuwaja, P. Srivastawa, M.B. Khan, S.S. Raza, H. Javed, K. Vaibhav, A. Khan, F. Islam, Brain Res. 1292 (2009) 123–135.

[19]R.A. Khan, M.R. Khan, S. Sahreen, BMC Complement. Altern. Med. 12 (2012) 178.

[20]R.A. Khan, M.R. Khan, S. Sahreen, BMC Complement. Altern. Med. 12 (2012) 204.

[21]A. Korkmaz, D. Kolankaya, J. Surg. Res. 164 (2010) 309–315.

[22]M.-R. Khajevand-Khazaei, P. Mohseni-Moghaddam, M. Hosseini, L. Gholami, T. Baluchnejadmojarad, M. Roghani, Eur. J. Pharmacol. 833 (2018) 307–313.

[23]C. La Casa, I. Villegas, C. Alarcón de la Lastra, V. Motilva, M.J. Martín Calero, J. Ethnopharmacol. 71 (2000) 45–53.

[24]F. Pu, K. Mishima, K. Irie, K. Motohashi, Y. Tanaka, K. Orito, T. Egawa, Y. Kitamura, N. Egashira, K. Iwasaki, M. Fujiwara, J. Pharmacol. Sci. 104 (2007) 329–334.

[25]W. Tongjaroenbuangam, N. Ruksee, P. Chantiratikul, N. Pakdeenarong, W. Kongbuntad, P. Govitrapong, Neurochem. Int. 59 (2011) 677–685.

[26]M.I. Azevedo, A.F. Pereira, R.B. Nogueira, F.E. Rolim, G.A.C. Brito, D.V.T. Wong, R.C.P. Lima-Júnior, R. de Albuquerque Ribeiro, M.L. Vale, Mol. Pain 9 (2013) 53.

[27]A. Annapurna, C.S. Reddy, R.B. Akondi, S.R.C. Rao, J. Pharm. Pharmacol. 61 (2009) 1365–1374.

[28]M. Li, Y. Jiang, W. Jing, B. Sun, C. Miao, L. Ren, Can. J. Physiol. Pharmacol. 91 (2013) 951–959.

[29]R. Huang, Z. Shi, L. Chen, Y. Zhang, J. Li, Y. An, Eur. J. Pharmacol. 814 (2017) 151–160.

[30]A. Ugusman, Z. Zakaria, K.H. Chua, N.A.M.M. Nordin, Z. Abdullah Mahdy, ScientificWorldJournal 2014 (2014) 169370.

[31]M.F. Mazzeo, R. Lippolis, A. Sorrentino, S. Liberti, F. Fragnito, R.A. Siciliano, PLoS One 10 (2015) e0142376.

[32]S.G. Parkar, T.M. Trower, D.E. Stevenson, Anaerobe 23 (2013) 12–19.

[33]C.F.L. Gonçalves, M.C. de S. dos Santos, M.G. Ginabreda, R.S. Fortunato, D.P. de Carvalho, A.C. Freitas Ferreira, PLoS One 8 (2013) e73908.

[34]C.F.L. Gonçalves, M.L. de Freitas, R.S. Fortunato, L. Miranda-Alves, D.P. Carvalho, A.C.F. Ferreira, Thyroid 28 (2018) 265–275.

[35]I.M. Borisov, Vopr. Pitan. (1980) 35–38.

[36]Q.-H. Hu, C. Wang, J.-M. Li, D.-M. Zhang, L.-D. Kong, Am. J. Physiol. Renal Physiol. 297 (2009) F1080–91.

[37]K.M. Kamel, O.M. Abd El-Raouf, S.A. Metwally, H.A. Abd El-Latif, M.E. El-sayed, J. Biochem. Mol. Toxicol. 28 (2014) 312–319.

[38]I.T. Abdel-Raheem, Basic Clin. Pharmacol. Toxicol. 107 (2010) 742–750.

[39]E.P. Cai, J.-K. Lin, J. Agric. Food Chem. 57 (2009) 9817–9827.