N-Acetylglucosamine | GlcNAc | NAG
Supports healthy gastrointestinal function*
Supports a healthy gut microbiota*
N-Acetyl-D-Glucosamine (NAG, GlcNAc, N-acetylglucosamine) is a fermentable amino sugar (i.e., a nitrogen-containing sugar) shown to have several biological roles that support healthy gut-brain functions [1–3]. It is part of some of the complex molecules in connective tissue, myelin, human breast milk, and mucus. In breast milk and mucus, NAG can be thought of as having prebiotic-like functions; it is essential for building molecules used as food by some friendly bacteria. NAG-containing oligosaccharides were first identified more than 50 years ago as the 'bifidus factor' in human breast milk, supporting the growth of intestinal bifidobacteria [4]. The gut mucus layer is essential for maintaining intestinal health and barrier functions. NAG is a natural part of healthy mucus; it’s found in mucus and used to make some mucins (complex mucoprotein molecules found in mucus). Some of the beneficial bacteria that live in mucus rely on NAG and NAG-containing molecules [5].*
N-Acetyl-D-Glucosamine (NAG) sourcing emphasis was to identify and purchase a vegan NAG (while most NAG is produced from crab and shrimp shells, ours is not produced from an animal source).
N-Acetyl-D-Glucosamine is a non-GMO, gluten-free, and vegan ingredient.
NAG naturally plays important structure and function roles in the intestines and the gut mucosal barrier. One of these roles can be thought of as being prebiotic-like. While NAG isn’t currently recognized as a prebiotic, it supports the growth of butyrate-producing gut bacteria [6]. In fact, one of the next-generation gut microbiota organisms, a mucus-degrading specialist called Akkermansia muciniphila, requires NAG for its growth [7,8]. And other next-generation bacteria, including Faecalibacterium prausnitzii, can use NAG for growth [9].* Because Qualia Synbiotic was formulated to support next-generation gut bacteria, we included NAG. We chose a recommended serving of 250 mg because it is within the quantitative range of NAG studied as a supplement in humans [10,11] and because we expect this amount to complement the other prebiotic and prebiotic-like ingredients in Qualia Synbiotic.*
Supports healthy gastrointestinal function and the gut microbiota*
Supports gastrointestinal health* [12,13]
Supports healthy gut microbiota composition* [6,9]
Supports Akkermansia muciniphila, a next-generation probiotic* [7,8]
Promotes the growth of butyrate-producing bacteria* [6]
Supports healthy SCFA levels (butyrate)* [6]
Supports optimal intestinal absorption and barrier functions* [14–17]
Supports healthy intestinal stem cells* [16]
Supports normal glycoprotein synthesis involved in protecting intestinal mucosa from damage* [14,18]
Supports healthy mucin biosynthesis, glycosylation, and secretion* [6,16,19–22]
Supports intestinal vagal nerve appetite signaling* [23]
Supports healthy brain function*
Supports healthy O-GlcNAcylation [important for healthy brain function]* [24–29]
Supports the maintenance of brain glycogen [brain glycogen is ~25% glucosamine, which acts as a reservoir for brain needs]* [30]
*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.
REFERENCES
[1]L. Zeibich, O. Schmidt, H.L. Drake, Environ. Microbiol. 21 (2019) 1436–1451.
[2]L. Chen, A.R. Walker, R.A. Burne, L. Zeng, Appl. Environ. Microbiol. 87 (2020).
[3]F.C. Pereira, K. Wasmund, I. Cobankovic, N. Jehmlich, C.W. Herbold, K.S. Lee, B. Sziranyi, C. Vesely, T. Decker, R. Stocker, B. Warth, M. von Bergen, M. Wagner, D. Berry, Nat. Commun. 11 (2020) 5104.
[4]S. Musilova, V. Rada, E. Vlkova, V. Bunesova, Benef. Microbes 5 (2014) 273–283.
[5]P. Paone, P.D. Cani, Gut 69 (2020) 2232–2243.
[6]S. Hino, T. Mizushima, K. Kaneko, E. Kawai, T. Kondo, T. Genda, T. Yamada, K. Hase, N. Nishimura, T. Morita, J. Nutr. 150 (2020) 2656–2665.
[7]A.V. Ropot, A.M. Karamzin, O.V. Sergeyev, Curr. Microbiol. 77 (2020) 1363–1372.
[8]N. Ottman, M. Davids, M. Suarez-Diez, S. Boeren, P.J. Schaap, V.A.P. Martins Dos Santos, H. Smidt, C. Belzer, W.M. de Vos, Appl. Environ. Microbiol. 83 (2017).
[9]M. Lopez-Siles, T.M. Khan, S.H. Duncan, H.J.M. Harmsen, L.J. Garcia-Gil, H.J. Flint, Appl. Environ. Microbiol. 78 (2012) 420–428.
[10]T. Tsuji, J. Yoon, N. Kitano, T. Okura, K. Tanaka, Aging Clin. Exp. Res. 28 (2016) 197–205.
[11]D. Kubomura, T. Ueno, M. Yamada, A. Tomonaga, I. Nagaoka, Exp. Ther. Med. 13 (2017) 1614–1621.
[12]S. Salvatore, R. Heuschkel, S. Tomlin, S.E. Davies, S. Edwards, J.A. Walker-Smith, I. French, S.H. Murch, Aliment. Pharmacol. Ther. 14 (2000) 1567–1579.
[13]A. Zhu, I. Patel, M. Hidalgo, V. Gandhi, Natural Medicine Journal 7 (2015) 2015–2004.
[14]A.F. Burton, F.H. Anderson, Am. J. Gastroenterol. 78 (1983) 19–22.
[15]M. Zhao, X. Xiong, K. Ren, B. Xu, M. Cheng, C. Sahu, K. Wu, Y. Nie, Z. Huang, R.S. Blumberg, X. Han, H.-B. Ruan, EMBO Mol. Med. 10 (2018).
[16]Z. Wang, J. Hu, X. Yang, L. Yin, M. Wang, Y. Yin, J. Li, H. Yang, Y. Yin, Anim Nutr 8 (2022) 10–17.
[17]Y. Liu, W. Xu, L. Liu, L. Guo, Y. Deng, J. Liu, Bangladesh J. Pharmacol. 7 (2012) 281–284.
[18]A. Breborowicz, M. Kuzlan-Pawlaczyk, K. Wieczorowska-Tobis, J. Wisniewska, P. Tam, I. French, G. Wu, Adv. Perit. Dial. 14 (1998) 31–35.
[19]G.L. Kauffman Jr, J. Clin. Gastroenterol. 3 (1981) 45–50.
[20]J. Martínez-Ocaña, P. Maravilla, A. Olivo-Díaz, Rev. Inst. Med. Trop. Sao Paulo 62 (2020) e64.
[21]A. Deters, F. Petereit, J. Schmidgall, A. Hensel, J. Pharm. Pharmacol. 60 (2008) 197–204.
[22]I.A. Finnie, A.D. Dwarakanath, B.A. Taylor, J.M. Rhodes, Gut 36 (1995) 93–99.
[23]Y. Okabe, T. Sakata, K. Fujimoto, K. Kurata, H. Yoshimatsu, K. Ueda, Proc. Soc. Exp. Biol. Med. 188 (1988) 23–29.
[24]B.E. Lee, P.-G. Suh, J.-I. Kim, Exp. Mol. Med. 53 (2021) 1674–1682.
[25]S. Gaunitz, L.O. Tjernberg, S. Schedin-Weiss, J. Neurochem. 159 (2021) 292–304.
[26]Y. Cho, H. Hwang, M.A. Rahman, C. Chung, H. Rhim, Sci. Rep. 10 (2020) 6924.
[27]J. Park, M.K.P. Lai, T.V. Arumugam, D.-G. Jo, Neuromolecular Med. 22 (2020) 171–193.
[28]E.G. Wheatley, E. Albarran, C.W. White 3rd, G. Bieri, C. Sanchez-Diaz, K. Pratt, C.E. Snethlage, J.B. Ding, S.A. Villeda, Curr. Biol. 29 (2019) 3359–3369.e4.
[29]O. Lagerlöf, J. Bioenerg. Biomembr. 50 (2018) 241–261.
[30]R.C. Sun, L.E.A. Young, R.C. Bruntz, K.H. Markussen, Z. Zhou, L.R. Conroy, T.R. Hawkinson, et al, Cell Metab. 33 (2021) 1404–1417.e9.