Luteolin

COMMON NAME

Luteolin | Digitoflavone | Luteolol | Luteoline


TOP BENEFITS OF LUTEOLIN

Supports brain function *

Supports healthy aging *

Support cellular health * 


WHAT IS LUTEOLIN?

Luteolin (3,4,5,7-tetrahydroxyflavone) is a plant flavone belonging to the flavonoid polyphenol group. It is a yellow plant pigment, with its name originating from the Latin word (luteus) for yellow. Polyphenols, like luteolin, play important roles in the plant kingdom. One of these roles is protecting plants from environmental stress. Because of this, luteolin is found in many herbs and vegetables, mostly in the leaves and flowering parts. Luteolin is present in low amounts in celery, artichoke, sweet bell peppers, carrots, onion leaves, broccoli, oregano, parsley, peppermint, thyme, chamomile, and chrysanthemum flowers, for example. Most of the research on luteolin has focused on supporting cellular health and brain functions.*


NEUROHACKER’S LUTEOLIN SOURCING

Luteolin is produced from the flower buds of Sophora japonica L. The high-purity standardized extract we use contains not less than 98% luteolin.

Luteolin is non-GMO, gluten-free, vegan, and Halal certified.

 

LUTEOLIN FORMULATING PRINCIPLES AND RATIONALE

In human studies, luteolin has been used in amounts ranging from 10-400 mg [1–6], though it is most commonly used at the low end of this range (10-100 mg) when combined with other ingredients. Our recommended serving was selected to be within the range used in human clinical research studies, taking into account the complementary nature it would be expected to have with other ingredients it’s combined with, especially other flavonoid polyphenols such as fisetin and quercetin.*


LUTEOLIN KEY MECHANISMS

Supports brain function*

Supports cognitive function (in animals)* [7–13]

Supports neuroprotective functions* [7,14–18]

Influences microglia and astrocyte activation* [8,19]

Influences neural immune signaling* [8,15,16,19]

Supports brain mitochondrial functions* [20]

Supports brain antioxidant defenses and counters oxidative stress [13,14,21]

Influences brain Nrf2 signaling* [14,22]

Supports neuronal autophagy* [9,15,22]

Supports BDNF levels* [10,12,13,21] 

Supports neurogenesis (in animals)* [10]


Promotes healthy aging and longevity*

Supports cellular functions involved with pruning stressed cells* [23–28]

Supports autophagy* [15,22,29–31]

Supports mitophagy* [32]

Influences immune signaling* [33,34]


Supports cellular signaling*

Influences PI3K/AKT signaling* [24,35–37]

Influences mTOR signaling* [38]

Influences AMPK signaling* [30,38]

Influences Nrf2 signaling* [14,22,39]

Influences NF-κB signaling* [33,34,39]


Complementary ingredients*

Quercetin in supporting apoptosis of unhealthy cells* [40]

Fisetin in supporting apoptosis of unhealthy cells* [40]

Fisetin in influencing immune signaling* [41,42]


*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.


REFERENCES

[1]L. D’Ascanio, F. Vitelli, C. Cingolani, M. Maranzano, M.J. Brenner, A. Di Stadio, Eur. Rev. Med. Pharmacol. Sci. 25 (2021) 4156–4162.

[2]K.S. Hodgin, E.K. Donovan, S. Kekes-Szabo, J.C. Lin, J. Feick, R.L. Massey, T.J. Ness, J.W. Younger, Int. J. Environ. Res. Public Health 18 (2021).

[3]M.L. Lunardelli, R. Crupi, R. Siracusa, G. Cocuzza, M. Cordaro, E. Martini, D. Impellizzeri, R. Di Paola, S. Cuzzocrea, CNS Neurol. Disord. Drug Targets 18 (2019) 530–554.

[4]M. Gelabert-Rebato, J.C. Wiebe, M. Martin-Rincon, V. Galvan-Alvarez, D. Curtelin, M. Perez-Valera, J.J. Habib, A. Pérez-López, T. Vega, D. Morales-Alamo, J.A.L. Calbet, Nutrients 11 (2019).

[5]C. De Luca, E.V. Mikhal’chik, M.V. Suprun, M. Papacharalambous, A.I. Truhanov, L.G. Korkina, Oxid. Med. Cell. Longev. 2016 (2016) 4389410.

[6]A. Taliou, E. Zintzaras, L. Lykouras, K. Francis, Clin. Ther. 35 (2013) 592–602.

[7]R.K. El-Asfar, M.O. El-Derany, A.-A.M. Sallam, S.A. Wahdan, E. El-Demerdash, S.A. Sayed, H.O. El-Mesallamy, Eur. J. Pharmacol. 908 (2021) 174337.

[8]J.-J. Kou, J.-Z. Shi, Y.-Y. He, J.-J. Hao, H.-Y. Zhang, D.-M. Luo, J.-K. Song, Y. Yan, X.-M. Xie, G.-H. Du, X.-B. Pang, Acta Pharmacol. Sin. (2021).

[9]L. Li, R. Zhou, H. Lv, L. Song, X. Xue, L. Wu, ACS Chem. Neurosci. 12 (2021) 3314–3322.

[10]W.-B. Zhou, Z.-N. Miao, B. Zhang, W. Long, F.-X. Zheng, J. Kong, B. Yu, Neural Regeneration Res. 14 (2019) 613–620.

[11]Y. Liu, X. Tian, L. Gou, L. Sun, X. Ling, X. Yin, Brain Res. Bull. 94 (2013) 23–29.

[12]Y. Liu, X. Fu, N. Lan, S. Li, J. Zhang, S. Wang, C. Li, Y. Shang, T. Huang, L. Zhang, Behav. Brain Res. 267 (2014) 178–188.

[13]J.-L. Zhen, Y.-N. Chang, Z.-Z. Qu, T. Fu, J.-Q. Liu, W.-P. Wang, Epilepsy Behav. 57 (2016) 177–184.

[14]J. Xu, H. Wang, K. Ding, L. Zhang, C. Wang, T. Li, W. Wei, X. Lu, Free Radic. Biol. Med. 71 (2014) 186–195.

[15]J. Xu, H. Wang, X. Lu, K. Ding, L. Zhang, J. He, W. Wei, Y. Wu, Brain Res. 1582 (2014) 237–246.

[16]Y. Yang, X. Tan, J. Xu, T. Wang, T. Liang, X. Xu, C. Ma, Z. Xu, W. Wang, H. Li, H. Shen, X. Li, W. Dong, G. Chen, Biomed. Pharmacother. 126 (2020) 110044.

[17]T.Y. Lin, C.W. Lu, S.J. Wang, Neurotoxicology 55 (2016) 48–57.

[18]A. Yahyazadeh, B.Z. Altunkaynak, Brain Res. 1744 (2020) 146919.

[19]M.D. Burton, J.L. Rytych, R. Amin, R.W. Johnson, Rejuvenation Res. 19 (2016) 286–292.

[20]E. Seydi, L. Mehrpouya, H. Sadeghi, S. Rahimi, J. Pourahmad, Pestic. Biochem. Physiol. 173 (2021) 104785.

[21]D.Y. Yoo, J.H. Choi, W. Kim, S.M. Nam, H.Y. Jung, J.H. Kim, M.-H. Won, Y.S. Yoon, I.K. Hwang, Neurol. Res. 35 (2013) 813–820.

[22]X. Tan, Y. Yang, J. Xu, P. Zhang, R. Deng, Y. Mao, J. He, Y. Chen, Y. Zhang, J. Ding, H. Li, H. Shen, X. Li, W. Dong, G. Chen, Front. Pharmacol. 10 (2019) 1551.

[23]J. Fu, D. Chen, B. Zhao, Z. Zhao, J. Zhou, Y. Xu, Y. Xin, C. Liu, L. Luo, Z. Yin, PLoS One 7 (2012) e49194.

[24]X. Lu, Y. Li, X. Li, H.A. Aisa, Oncol. Lett. 14 (2017) 1993–2000.

[25]Z. Li, Y. Zhang, L. Chen, H. Li, Food Funct. 9 (2018) 3018–3027.

[26]T. Liu, J. Xu, H.L. Yan, F.C. Cheng, X.J. Liu, Oncol. Res. 27 (2019) 773–778.

[27]S.B. Yee, J.H. Lee, H.Y. Chung, K.S. Im, S.J. Bae, J.S. Choi, N.D. Kim, Arch. Pharm. Res. 26 (2003) 151–156.

[28]G. Gao, R. Ge, Y. Li, S. Liu, Artif. Cells Nanomed. Biotechnol. 47 (2019) 3265–3271.

[29]Y. Liao, Y. Xu, M. Cao, Y. Huan, L. Zhu, Y. Jiang, W. Shen, G. Zhu, J Immunol Res 2018 (2018) 4623919.

[30]B. Wu, H. Song, M. Fan, F. You, L. Zhang, J. Luo, J. Li, L. Wang, C. Li, M. Yuan, Int. J. Mol. Med. 45 (2020) 1477–1487.

[31]Z. Cao, H. Zhang, X. Cai, W. Fang, D. Chai, Y. Wen, H. Chen, F. Chu, Y. Zhang, Cell. Physiol. Biochem. 43 (2017) 1803–1812.

[32]H. Xu, W. Yu, S. Sun, C. Li, Y. Zhang, J. Ren, Front. Physiol. 11 (2020) 113.

[33]J.-O. Lee, D. Jeong, M.-Y. Kim, J.Y. Cho, Mediators Inflamm. 2015 (2015) 967053.

[34]T.-K. Kao, Y.-C. Ou, S.-Y. Lin, H.-C. Pan, P.-J. Song, S.-L. Raung, C.-Y. Lai, S.-L. Liao, H.-C. Lu, C.-J. Chen, J. Nutr. Biochem. 22 (2011) 612–624.

[35]Q. Jiang, D. Pan, Y. Yang, Y. Hu, L. Fang, P. Shang, Y. Xia, D. Li, Curr. Pharm. Biotechnol. 19 (2018) 428–437.

[36]S. Dirimanov, P. Högger, Biomolecules 9 (2019).

[37]W.-J. Lee, L.-F. Wu, W.-K. Chen, C.-J. Wang, T.-H. Tseng, Chem. Biol. Interact. 160 (2006) 123–133.

[38]X. Xu, Z. Yu, B. Han, S. Li, Y. Sun, Y. Du, Z. Wang, D. Gao, Z. Zhang, J. Inorg. Biochem. 224 (2021) 111583.

[39]H. Zhang, X. Tan, D. Yang, J. Lu, B. Liu, R. Baiyun, Z. Zhang, Oncotarget 8 (2017) 40982–40993.

[40]K. Sak, K. Kasemaa, H. Everaus, Food Funct. 7 (2016) 3815–3824.

[41]A. Kim, J.-M. Yun, J. Med. Food 20 (2017) 782–789.

[42]M. Hytti, D. Szabó, N. Piippo, E. Korhonen, P. Honkakoski, K. Kaarniranta, G. Petrovski, A. Kauppinen, J. Nutr. Biochem. 42 (2017) 37–42.