AstaPure® Haematococcus pluvialis microalgae extract (3% astaxanthin)

COMMON NAME

Astaxanthin


TOP BENEFITS OF ASTAPURE®

Supports skin health*

Supports eye health*

Supports maintenance of cognitive function*

Supports general immune health*

Supports sleep*


WHAT IS ASTAPURE®?

AstaPure® is a branded Haematococcus pluvialis microalgae extract standardized for astaxanthin content. This algae is used because H. pluvialis is the most concentrated natural source of astaxanthin. Astaxanthin is one member in a class of pigments called carotenoids—carotenoids are fat-soluble yellow, orange, or red pigments. Astaxanthin is on the reddish end of the carotenoid pigment color continuum and is produced by some freshwater and marine algae and microorganisms. It is the pigment that gives salmon and crustaceans (i.e. shrimp, crab, lobster, and crayfish) an orange-red color, and flamingos their characteristic pink coloration. These organisms, like humans, are unable to make the astaxanthin themselves; they consume it in the aquatic food chain. Astaxanthin is a plant defense compound, in other words, more of it is made when the environment is stressful to protect a microalgae like H. pluvialis from, for example, intense UV radiation from sunlight. Since it is fat-soluble, astaxanthin is active in places with high lipid content, where it’s a powerful antioxidant. These places include cell membranes (which have a lipid bilayer), mitochondria, and the brain and nervous system. One of the things that make astaxanthin fairly unique, even compared to other carotenoids, is that its shape allows it to stabilize and protect lipid membranes. There is a growing body of research on astaxanthin for cognitive function support, immune system support, skin health, vision and other areas of wellness and performance. Its chemical structure allows it to readily cross the blood-brain barrier (BBB) and accumulate in the brain [1,2].*


NEUROHACKER’S ASTAPURE® SOURCING

AstaPure® Haematococcus pluvialis microalgae extract contains not less than 3% Natural Astaxanthin Complex (as 3S, 3'S enantiomers). It also contains the full-spectrum of other nutrients that occur in this fresh water microalgae including essential fatty acids, dietary fibers, polysaccharides, vitamins, and minerals.*

AstaPure® Haematococcus pluvialis microalgae extract is produced by Algatechnologies Ltd (i.e., Algatech) on a kibbutz in the Arava desert region in Israel. 

AstaPure® Haematococcus pluvialis microalgae extract is grown sustainably using green technology including solar energy and advanced water recycling technologies to minimize environmental impact. 

AstaPure® Haematococcus pluvialis microalgae extract is Non-GMO, Vegan and self-affirmed GRAS (Generally Recognized As Safe).

AstaPure® is a registered trademark of Algatechnologies Ltd.


ASTAPURE® FORMULATING PRINCIPLES AND RATIONALE

While a wide range of doses of astaxanthin have been used in studies, the most common dosing range is 1-12 mg and functional benefits have been reported even at the lower end of this range. One of our formulating principles is to determine whether there is a serving range in which many of the benefits occur and above which there appear to be diminishing returns (i.e., a threshold), and to provide a serving within this threshold range (see Neurohacker Dosing Principles). We consider astaxanthin to be one of these threshold compounds, because many of the benefits appear to occur at a low amount, and in some functional areas a worse response may occur at higher amounts. As an example, in a comparative 8-week study in young, healthy females, a lower dose of 2 mg per day produced healthier plasma C-reactive protein and DNA protection responses than a higher dose of 8 mg. The lower dose also was able to produce almost the same blood levels of astaxanthin as the higher dose [3]. Because astaxanthin is fat-soluble, and like other fat-soluble compounds, accumulates over time, lower amounts may also be preferred when it will be given over extended periods of time. For an ingredient like astaxanthin, which has been studied in a variety of areas, the serving selected will also be influenced by what the formula is trying to accomplish. In other words, if the product is intended for skin health, the serving range would be based strongly on human skin studies of astaxanthin. If the formula is for another application, the serving selected could vary. And lastly, when determining the amount to be used in a formulation, we also consider whether we are using, or plan to use, an ingredient in another product. It’s important to us to ensure that a user taking several of our products will not inadvertently take too much of an ingredient like astaxanthin. Because of its wide range of benefits, we plan on having it in more products over time, which also influences our dosage selection.*


ASTAPURE® KEY MECHANISMS

Supports brain function*

Supports learning and memory* [4–8]

Supports healthy sleep* [9,10]

Supports brain-derived neurotrophic factor (BDNF) levels* [11–16]

Supports hippocampal neurogenesis in mice* [6]

Influences acetylcholinesterase (AChE) activity* [17]

Supports neural stem cell function* [18,19]

Supports neuroprotective functions* [17,20–26]

Supports brain antioxidant defenses* [11,21,25]

Supports neural mitochondrial function* [21,26,27]


Supports antioxidant defenses*

Supports total antioxidant capacity* [11,28]

Counters ROS production and oxidative stress and damage* [3,11,25,28–34] 

Supports antioxidant enzyme levels* [11,25,28,29,33,35]

Supports replenishment of GSH levels* [11,25,33]

Supports Nrf2 signaling and phase II detox enzymes* [26,35–39] 


Supports vision*

Supports visual acuity / visual function* [40,41]

Supports resistance to eye strain/fatigue* [42]

Supports accommodation — focus adjustments between near and far objects* [41–43]

Supports visual reaction time* [44]

Supports optic nerve and retinal cell protective functions* [29,35,45,46]

Supports retinal antioxidant defenses and protection against oxidative stress* [45,46]

Supports protection from light-induced retinal damage* [31]

Supports ocular blood flow* [47,48]


Supports healthy immune function*

Supports healthy immune function* [3,49–53]

Supports intestinal immune functions* [54]

Supports Th1/TH2 balance* [55,56]


Supports skin health*

Supports skin texture/smoothness* [57]

May help minimize the appearance of fine lines and wrinkles* [58–60] 

Supports skin elasticity* [58,60]

Supports skin hydration* [57,59,60]

Supports healthy transepidermal water loss (TEWL) levels* [58,61]

Supports healthy epidermal structure and barrier function* [62,63]  

Supports skin in adapting to environmental stress* [61,62,64–70] 

Supports dermal extracellular matrix (ECM) structure (collagen, elastin)* [59,61,62,68,71,72] 

Supports skin growth factor production (bFGF, VEGF)* [71,72]

Supports skin vascularity* [62]

Supports maintenance of skin repair functions* [72,73]

Supports healthy skin microbiota* [63]

Support antioxidant defenses and counters ROS production and oxidative stress* [38,63,64,66] 

Supports Nrf2 signaling and phase II detox defenses* [38,64,74–76]

Supports healthy immune signaling* [59,65,68,73]


Supports a healthy mood*

Supports a positive mental-emotional bias* [77,78]

Supports fatigue resistance* [77]


Promotes general health and well-being*

Supports mitochondrial function* [79–81]

Supports stem cell function* [18,19,38,82,83]

Supports cardiovascular and metabolic health* [84,85]

Supports a healthy gut microbiota* [86–88]


Complementary ingredients*

Sesamin (from sesame seed extracts) in supporting maintenance of cognitive function* [89] and recovery from mental fatigue* [90]

Collagen for skin health* [91]

Gotu kola for skin health* [92]

Soy isoflavones for skin health* [93] 


*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.


REFERENCES

[1]B. Grimmig, S.-H. Kim, K. Nash, P.C. Bickford, R. Douglas Shytle, Geroscience 39 (2017) 19–32.

[2]Y. Manabe, T. Komatsu, S. Seki, T. Sugawara, Biosci. Biotechnol. Biochem. 82 (2018) 1433–1436.

[3]J.S. Park, J.H. Chyun, Y.K. Kim, L.L. Line, B.P. Chew, Nutr. Metab. 7 (2010) 18.

[4]T. Sekikawa, Y. Kizawa, Y. Li, T. Takara, Pharmacometrics 97 (2019) 1–13.

[5]M. Hayashi, T. Ishibashi, T. Maoka, Journal of Clinical Biochemistry and Nutrition 62 (2018) 195–205.

[6]J.S. Yook, M. Okamoto, R. Rakwal, J. Shibato, M.C. Lee, T. Matsui, H. Chang, J.Y. Cho, H. Soya, Mol. Nutr. Food Res. 60 (2016) 589–599.

[7]A. Satoh, S. Tsuji, Y. Okada, N. Murakami, M. Urami, K. Nakagawa, M. Ishikura, M. Katagiri, Y. Koga, T. Shirasawa, J. Clin. Biochem. Nutr. 44 (2009) 280–284.

[8]M. Katagiri, A. Satoh, S. Tsuji, T. Shirasawa, J. Clin. Biochem. Nutr. 51 (2012) 102–107.

[9]M. Hayashi, M. Kawamura, Y. Kawashima, T. Uemura, T. Maoka, J. Clin. Biochem. Nutr. 66 (2020) 92–102.

[10]H. Saito, Y. Cherasse, R. Suzuki, M. Mitarai, F. Ueda, Y. Urade, Molecular Nutrition & Food Research 61 (2017) 1600882.

[11]W. Wu, X. Wang, Q. Xiang, X. Meng, Y. Peng, N. Du, Z. Liu, Q. Sun, C. Wang, X. Liu, Food Funct. 5 (2014) 158–166.

[12]Y. Ke, S. Bu, H. Ma, L. Gao, Y. Cai, Y. Zhang, W. Zhou, Front. Pharmacol. 10 (2019) 1621.

[13]Y. Lu, X. Wang, J. Feng, T. Xie, P. Si, W. Wang, Brain Res. Bull. 148 (2019) 63–69.

[14]K.M. Damodara Gowda, N. Suchetha Kumari, H. Ullal, Nutr. Neurosci. 23 (2020) 422–431.

[15]Y. Nai, H. Liu, X. Bi, H. Gao, C. Ren, Hum. Exp. Toxicol. 37 (2018) 929–936.

[16]X. Ji, D. Peng, Y. Zhang, J. Zhang, Y. Wang, Y. Gao, N. Lu, P. Tang, Brain Res. 1659 (2017) 88–95.

[17]S.E. El-Agamy, A.K. Abdel-Aziz, S. Wahdan, A. Esmat, S.S. Azab, Mol. Neurobiol. 55 (2018) 5727–5740.

[18]J.-H. Kim, S.-W. Nam, B.-W. Kim, W. Choi, J.-H. Lee, W.-J. Kim, Y.-H. Choi, Int. J. Mol. Sci. 11 (2010) 5109–5119.

[19]J.H. Kim, S.-W. Nam, B.W. Kim, W.-J. Kim, Y.H. Choi, Food Chem. Toxicol. 48 (2010) 1741–1745.

[20]B. Grimmig, L. Daly, M. Subbarayan, C. Hudson, R. Williamson, K. Nash, P.C. Bickford, Oncotarget 9 (2018) 10388–10401.

[21]D.-H. Lee, C.-S. Kim, Y.J. Lee, Food Chem. Toxicol. 49 (2011) 271–280.

[22]X. Zhou, F. Zhang, X. Hu, J. Chen, X. Wen, Y. Sun, Y. Liu, R. Tang, K. Zheng, Y. Song, Physiol. Behav. 151 (2015) 412–420.

[23]L. Pan, Y. Zhou, X.-F. Li, Q.-J. Wan, L.-H. Yu, Brain Res. Bull. 130 (2017) 211–220.

[24]X.-S. Zhang, X. Zhang, Q. Wu, W. Li, C.-X. Wang, G.-B. Xie, X.-M. Zhou, J.-X. Shi, M.-L. Zhou, J. Surg. Res. 192 (2014) 206–213.

[25]Y. Xue, Z. Qu, J. Fu, J. Zhen, W. Wang, Y. Cai, W. Wang, Brain Res. Bull. 131 (2017) 221–228.

[26]X. Wen, A. Huang, J. Hu, Z. Zhong, Y. Liu, Z. Li, X. Pan, Z. Liu, Neuroscience 303 (2015) 558–568.

[27]X. Liu, T. Shibata, S. Hisaka, T. Osawa, Brain Res. 1254 (2009) 18–27.

[28]H.D. Choi, J.H. Kim, M.J. Chang, Y. Kyu-Youn, W.G. Shin, Phytother. Res. 25 (2011) 1813–1818.

[29]L.-Y. Dong, J. Jin, G. Lu, X.-L. Kang, Mar. Drugs 11 (2013) 960–974.

[30]H. Hashimoto, K. Arai, S. Hayashi, H. Okamoto, J. Takahashi, M. Chikuda, Y. Obara, J. Clin. Biochem. Nutr. 53 (2013) 1–7.

[31]T. Otsuka, M. Shimazawa, T. Nakanishi, Y. Ohno, Y. Inoue, K. Tsuruma, T. Ishibashi, H. Hara, J. Pharmacol. Sci. 123 (2013) 209–218.

[32]K. Nakagawa, T. Kiko, T. Miyazawa, G. Carpentero Burdeos, F. Kimura, A. Satoh, T. Miyazawa, Br. J. Nutr. 105 (2011) 1563–1571.

[33]M.M. Al-Amin, S. Akhter, A.T. Hasan, T. Alam, S.M. Nageeb Hasan, A.R.M. Saifullah, M. Shohel, Metab. Brain Dis. 30 (2015) 1237–1246.

[34]J. Karppi, T.H. Rissanen, K. Nyyssönen, J. Kaikkonen, A.G. Olsson, S. Voutilainen, J.T. Salonen, Int. J. Vitam. Nutr. Res. 77 (2007) 3–11.

[35]W.-N. Lin, K. Kapupara, Y.-T. Wen, Y.-H. Chen, I.-H. Pan, R.-K. Tsai, Mar. Drugs 18 (2020).

[36]H. Kubo, K. Asai, K. Kojima, A. Sugitani, Y. Kyomoto, A. Okamoto, K. Yamada, N. Ijiri, T. Watanabe, K. Hirata, T. Kawaguchi, Mar. Drugs 17 (2019).

[37]Q. Ye, B. Huang, X. Zhang, Y. Zhu, X. Chen, BMC Neurosci. 13 (2012) 156.

[38]X.-L. Xue, X.-D. Han, Y. Li, X.-F. Chu, W.-M. Miao, J.-L. Zhang, S.-J. Fan, Stem Cell Res. Ther. 8 (2017) 7.

[39]D.-H. Lee, Y.J. Lee, K.H. Kwon, J. Clin. Biochem. Nutr. 47 (2010) 121–129.

[40]S. Piermarocchi, S. Saviano, V. Parisi, M. Tedeschi, G. Panozzo, G. Scarpa, G. Boschi, G. Lo Giudice, Carmis Study Group, Eur. J. Ophthalmol. 22 (2012) 216–225.

[41]Y. Nagaki, S. Hayasaka, T. Yamada, Y. Hayasaka, M. Sanada, T. Uonomi, (2002).

[42]Y. Nagaki, H. Tsukahara, T. Yoshimoto, K. Masuda, Folia Ophthalomogica Japonica. 5 (2010) 461–468.

[43]Y. Uchino, M. Uchino, M. Dogru, K. Fukagawa, K. Tsubota, J. Nutr. Health Aging 16 (2012) 478–481.

[44]Y. Seya, J. Takahashi, K. Imanaka, Japanese Journal of Physiological Anthropology 14 (2009) 59–66.

[45]A. Cort, N. Ozturk, D. Akpinar, M. Unal, G. Yucel, A. Ciftcioglu, P. Yargicoglu, M. Aslan, Regul. Toxicol. Pharmacol. 58 (2010) 121–130.

[46]P.-T. Yeh, H.-W. Huang, C.-M. Yang, W.-S. Yang, C.-H. Yang, PLoS One 11 (2016) e0146438.

[47]M. Saito, K. Yoshida, W. Saito, A. Fujiya, K. Ohgami, N. Kitaichi, H. Tsukahara, S. Ishida, S. Ohno, Graefes Arch. Clin. Exp. Ophthalmol. 250 (2012) 239–245.

[48]Y. Nagaki, M. Mihara, J. Takahashi, A. Kitamura, Y. Horita, Y. Sugiura, H. Tsukahara, Altern. Med. Rev. 21 (2005) 537–542.

[49]I. Baralic, M. Andjelkovic, B. Djordjevic, N. Dikic, N. Radivojevic, V. Suzin-Zivkovic, S. Radojevic-Skodric, S. Pejic, Evid. Based. Complement. Alternat. Med. 2015 (2015) 783761.

[50]J.S. Park, B.D. Mathison, M.G. Hayek, S. Massimino, G.A. Reinhart, B.P. Chew, Vet. Immunol. Immunopathol. 144 (2011) 455–461.

[51]B.P. Chew, B.D. Mathison, M.G. Hayek, S. Massimino, G.A. Reinhart, J.S. Park, Vet. Immunol. Immunopathol. 140 (2011) 199–206.

[52]H. Jyonouchi, S. Sun, Y. Tomita, M.D. Gross, J. Nutr. 125 (1995) 2483–2492.

[53]H. Jyonouchi, S. Sun, M. Mizokami, M.D. Gross, Nutr. Cancer 26 (1996) 313–324.

[54]L. Zhang, W. Cao, Y. Gao, R. Yang, X. Zhang, J. Xu, Q. Tang, Food Funct. 11 (2020) 3371–3381.

[55]S. Davinelli, H.M. Melvang, L.P. Andersen, G. Scapagnini, M.E. Nielsen, Mar. Drugs 17 (2019).

[56]Y.-H. Hwang, S.-G. Hong, S.-K. Mun, S.-J. Kim, S.-J. Lee, J.-J. Kim, K.-Y. Kang, S.-T. Yee, Molecules 22 (2017).

[57]N. Ito, S. Seki, F. Ueda, Nutrients 10 (2018) 817.

[58]K. Tominaga, N. Hongo, M. Karato, E. Yamashita, Acta Biochim. Pol. 59 (2012) 43–47.

[59]K. Tominaga, N. Hongo, M. Fujishita, Y. Takahashi, Y. Adachi, J. Clin. Biochem. Nutr. 61 (2017) 33–39.

[60]L. Phetcharat, K. Wongsuphasawat, K. Winther, Clin. Interv. Aging 10 (2015) 1849–1856.

[61]T. Komatsu, S. Sasaki, Y. Manabe, T. Hirata, T. Sugawara, PLoS One 12 (2017) e0171178.

[62]X. Li, T. Matsumoto, M. Takuwa, M. Saeed Ebrahim Shaiku Ali, T. Hirabashi, H. Kondo, H. Fujino, Biomedicines 8 (2020).

[63]N.E. Chalyk, V.A. Klochkov, T.Y. Bandaletova, N.H. Kyle, I.M. Petyaev, Nutr. Res. 48 (2017) 40–48.

[64]E. Camera, A. Mastrofrancesco, C. Fabbri, F. Daubrawa, M. Picardo, H. Sies, W. Stahl, Exp. Dermatol. 18 (2009) 222–231.

[65]Y. Yoshihisa, M.U. Rehman, T. Shimizu, Exp. Dermatol. 23 (2014) 178–183.

[66]N.M. Lyons, N.M. O’Brien, J. Dermatol. Sci. 30 (2002) 73–84.

[67]M. Santocono, M. Zurria, M. Berrettini, D. Fedeli, G. Falcioni, J. Photochem. Photobiol. B 85 (2006) 205–215.

[68]K. Suganuma, H. Nakajima, M. Ohtsuki, G. Imokawa, J. Dermatol. Sci. 58 (2010) 136–142.

[69]T. Niwano, S. Terazawa, H. Nakajima, Y. Wakabayashi, G. Imokawa, Cytokine 73 (2015) 184–197.

[70]H. Nakajima, K. Fukazawa, Y. Wakabayashi, K. Wakamatsu, K. Senda, G. Imokawa, Arch. Dermatol. Res. 304 (2012) 803–816.

[71]H.-Y. Chou, C. Lee, J.-L. Pan, Z.-H. Wen, S.-H. Huang, C.-W.J. Lan, W.-T. Liu, T.-C. Hour, Y.-C. Hseu, B.H. Hwang, K.-C. Cheng, H.-M.D. Wang, Int. J. Mol. Sci. 17 (2016).

[72]J. Meephansan, A. Rungjang, W. Yingmema, R. Deenonpoe, S. Ponnikorn, Clin. Cosmet. Investig. Dermatol. 10 (2017) 259–265.

[73]H.-Y. Chou, D.-L. Ma, C.-H. Leung, C.-C. Chiu, T.-C. Hour, H.-M.D. Wang, Oxid. Med. Cell. Longev. 2020 (2020) 4946902.

[74]T. Niu, R. Xuan, L. Jiang, W. Wu, Z. Zhen, Y. Song, L. Hong, K. Zheng, J. Zhang, Q. Xu, Y. Tan, X. Yan, H. Chen, J. Agric. Food Chem. 66 (2018) 1551–1559.

[75]C.L.L. Saw, A.Y. Yang, Y. Guo, A.-N.T. Kong, Food Chem. Toxicol. 62 (2013) 869–875.

[76]Q. Fang, S. Guo, H. Zhou, R. Han, P. Wu, C. Han, Sci. Rep. 7 (2017) 41440.

[77]S. Talbott, D. Hantla, B. Capelli, L. Ding, Y. Li, C. Artaria, EC Nutrition 14 (2019) 239–246.

[78]X.-Y. Zhou, F. Zhang, X.-T. Hu, J. Chen, R.-X. Tang, K.-Y. Zheng, Y.-J. Song, Brain Res. 1657 (2017) 262–268.

[79]S.H. Kim, H. Kim, Nutrients 10 (2018).

[80]A.M. Wolf, S. Asoh, H. Hiranuma, I. Ohsawa, K. Iio, A. Satou, M. Ishikura, S. Ohta, J. Nutr. Biochem. 21 (2010) 381–389.

[81]J.S. Park, B.D. Mathison, M.G. Hayek, J. Zhang, G.A. Reinhart, B.P. Chew, J. Anim. Sci. 91 (2013) 268–275.

[82]N. Ghasemi, Avicenna J. Med. Biotechnol. 10 (2018) 69–74.

[83]H. Yaghooti, N. Mohammadtaghvaei, K. Mahboobnia, Int. Immunopharmacol. 68 (2019) 164–170.

[84]N.S. Mashhadi, M. Zakerkish, J. Mohammadiasl, M. Zarei, M. Mohammadshahi, M.H. Haghighizadeh, Asia Pac. J. Clin. Nutr. 27 (2018) 341–346.

[85]H. Yoshida, H. Yanai, K. Ito, Y. Tomono, T. Koikeda, H. Tsukahara, N. Tada, Atherosclerosis 209 (2010) 520–523.

[86]H. Liu, M. Liu, X. Fu, Z. Zhang, L. Zhu, X. Zheng, J. Liu, Nutrients 10 (2018).

[87]J. Wang, S. Liu, H. Wang, S. Xiao, C. Li, Y. Li, B. Liu, Mar. Drugs 17 (2019).

[88]Y. Lyu, L. Wu, F. Wang, X. Shen, D. Lin, Exp. Biol. Med. 243 (2018) 613–620.

[89]N. Ito, H. Saito, S. Seki, F. Ueda, T. Asada, J. Alzheimers. Dis. 62 (2018) 1767–1775.

[90]A. Imai, Y. Oda, N. Ito, S. Seki, K. Nakagawa, T. Miyazawa, F. Ueda, Nutrients 10 (2018).

[91]H.-S. Yoon, H.H. Cho, S. Cho, S.-R. Lee, M.-H. Shin, J.H. Chung, J. Med. Food 17 (2014) 810–816.

[92]J.H. Park, I.J. Yeo, J.S. Jang, K.C. Kim, M.H. Park, H.P. Lee, S.B. Han, J.T. Hong, Allergy Asthma Immunol. Res. 11 (2019) 548–559.

[93]J. Shin, J.-E. Kim, K.-J. Pak, J.I. Kang, T.-S. Kim, S.-Y. Lee, I.-H. Yeo, J.H.Y. Park, J.H. Kim, N.J. Kang, K.W. Lee, Int. J. Mol. Sci. 18 (2017).